Climate Research Inter-Research
Climate Research

IR Home



CR
Home
Editors
Forthcoming
Information
CR Online
Subscribe
CR SPECIAL 1
CR SPECIAL 2
CR SPECIAL 3
CR SPECIAL 4
CR SPECIAL 5
CR SPECIAL 6


Journals
Home
MEPS
AME
CR
DAO
ESEP
Search
Subscribe

Book Series
EE Books
Top Books
Order

Discussion Forums
Home

Research
Endangered Species Programs

Institutions
International Ecology Institute
Eco-Ethics International Union

Foundation
Otto Kinne Foundation

CR 10:163-178 (1998)

Abstract

Statistical downscaling of daily precipitation using daily airflow and seasonal teleconnection indices

R. L. Wilby*

National Center for Atmospheric Research, Boulder, Colorado 80303, USA and Division of Geography, University of Derby, Kedleston Road, Derby DE22 IGB, United Kingdom

*E-mail: r.l.wilby@derby.ac.uk

ABSTRACT: Monthly or seasonal climate variability is seldom captured adequately by high-resolution statistical downscaling models. However, such deficiences may, in fact, be an artefact of the failure of many downscaling models to incorporate appropriate low-frequency predictor variables. The present study explores the possibility of using variables that characterise both the high- and low-frequency variability of daily precipitation at selected sites in the British Isles. Accordingly, 3 statistical downscaling models were calibrated by regressing daily precipitation data for sites at Durham and Kempsford, UK, against regional climate predictors for the period 1881-1935. Model 1 employed only 1 predictor, the daily vorticity obtained from daily grid-point mean-sea-level pressure over the British Isles. Model 2 employed both daily vorticity and seasonal North Atlantic Oscillation Indices (NAOI) as predictors. Finally, Model 3 employed daily vorticity and seasonal North Atlantic sea-surface temperature (SST) anomalies as predictors. All 3 models were validated using daily and monthly precipitation statistics at the same stations for the period 1936-1990. Although Models 2 and 3 did yield improvements in the downscaling of the monthly precipitation diagnostics, the enhancement was only modest relative to Model 1 (the vorticity-only model). Nonetheless, the preliminary results suggest that there may be some merit in using North Atlantic SST series as a downscaling predictor variable for daily/monthly precipitation in the UK. However, further research is required to determine whether or not the inclusion of teleconnection indices in downscaling schemes leads to better representations of low-frequency variability in both present and future climates when General Circulation Model outputs are employed.

KEY WORDS: Precipitation · Downscaling · Non-stationarity · Teleconnection indices · Climate change

Full text in pdf format

Published in CR Vol. 10, No. 3 (1998) on December 10
ISSN: 0936-577X. Copyright © Inter-Research, Oldendorf/Luhe, 1998

Copyright © 2001; Inter-Research
Webmaster: webmaster@int-res.com