IR Home
DAO
Home
Editors
Forthcoming
Information
Journals
Home
MEPS
AME
CR
DAO
ESEP
Search
Subscribe
Book Series
EE Books
Top Books
ESEP Books
Order
Discussion Forums
Home
Research
Endangered Species Programs
Institutions
International Ecology Institute
Eco-Ethics International Union
Foundation
Otto Kinne Foundation
| |
DAO 51:13-25 (2002)
|
Abstract
|

An Aeromonas salmonicida type IV pilin is required for virulence in rainbow trout Oncorhynchus mykiss
Cynthia L. Masada1, Scott E. LaPatra2, Andrew W. Morton2, Mark S. Strom1,*
1Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, United States Department of Commerce, 2725 Montlake Boulevard East, Seattle, Washington 98112, USA
2Clear Springs Foods, PO Box 712, Buhl, Idaho 83316, USA
*Corresponding author. E-mail: mark.strom@noaa.gov

ABSTRACT: Aeromonas salmonicida expresses a large number of proven and suspected virulence factors including bacterial surface proteins, extracellular degradative enzymes, and toxins. We report the isolation and characterization of a 4-gene
cluster, tapABCD, from virulent A. salmonicida A450 that encodes proteins homologous to components required for type IV pilus biogenesis. One gene, tapA, encodes a protein with high homology to type IV pilus subunit proteins from many
Gram-negative bacterial pathogens, including Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio vulnificus. A survey of A. salmonicida isolates from a variety of sources shows that the tapA gene is as ubiquitous
in this species as it is in other members of the Aeromonads. Immunoblotting experiments demonstrate that it is expressed in vitro and is antigenically conserved among the A. salmonicida strains tested. A mutant A. salmonicida strain
defective in expression of TapA was constructed by allelic exchange and found to be slightly less pathogenic for juvenile Oncorhynchus mykiss (rainbow trout) than wild type when delivered by intraperitoneal injection. In addition, fish initially
challenged with a high dose of wild type were slightly more resistant to rechallenge with wild type than those initially challenged with the tapA mutant strain, suggesting that presence of TapA contributes to immunity. Two of the other three genes
identified, tapB and tapC, encode proteins with homology to factors known to be required for type IV pilus assembly in P. aeruginosa, but in an as yet unidentified manner. TapB is a member of the ABC-transporter family of proteins
that contain characteristic nucleotide-binding regions, and which may provide energy for type IV pilus assembly through the hydrolysis of ATP. TapC homologs are integral cytoplasmic membrane proteins that may play a role in pilus anchoring or initiation
of assembly. The fourth gene, tapD, encodes a product that shares homology with a family of proteins with a known biochemical function, namely, the type IV prepilin leader peptidases. These bifunctional enzymes proteolytically cleave the leader
peptide from the pilin precursor (prepilin) and then N-methylate the newly exposed N-terminal amino acid prior to assembly of the subunits into the pilus structure. We demonstrate that A. salmonicida TapD is able to restore type IV pilus
assembly and type II secretion in a P. aeruginosa strain carrying a mutation in its type IV peptidase gene, suggesting that it plays the same role in A. salmonicida.
KEY WORDS: Virulence · Type IV pilin · Type II protein secretion
Full text in pdf format

Published in DAO Vol.
51, No. 1
(2002) on August 15
Print ISSN: 0177-5103; Online ISSN: 1616-1580.
Copyright © Inter-Research, Oldendorf/Luhe, 2002
|