Climate Research

Inter-Research
Climate Research

IR Home



CR
Home
Editors
Forthcoming
Information
Subscribe
CR SPECIAL 1
CR SPECIAL 2
CR SPECIAL 3
CR SPECIAL 4
CR SPECIAL 5
CR SPECIAL 6
CR SPECIAL 7
CR SPECIAL 8
CR SPECIAL 9
CR SPECIAL 10
CR SPECIAL 11


Journals
Home
MEPS
AME
CR
DAO
ESEP
Search
Subscribe

Book Series
EE Books
Top Books
ESEP Books
Order

EEIU Brochures
(pdf format)

Discussion Forums
Home

Research
Endangered Species Programs

Institutions
International Ecology Institute
Eco-Ethics International Union

Foundation
Otto Kinne Foundation

CR 19:257-264 (2002)

Abstract

Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes

Frank-M. Chmielewski*, Thomas Rötzer

Humboldt University Berlin, Faculty of Agriculture and Horticulture, Institute of Crop Sciences, Subdivision of Agricultural Meteorology, Albrecht-Thaer-Weg 5, 14195 Berlin, Germany

*E-mail: chmielew@agrar.hu-berlin.de

ABSTRACT: To investigate the annual and spatial variability in the beginning of growing season across Europe, phenological data of the International Phenological Gardens for the period 1969-1998 were used. The beginning of growing season (BGS) was defined as an average leaf unfolding index of 4 tree species (Betula pubescens, Prunus avium, Sorbus aucuparia and Ribes alpinum). The study shows significant changes in the mean air temperatures from February to April and in the average BGS in Europe since 1989. In the last decade the mean temperature in early spring increased by 0.8°C. As a result the average BGS advanced by 8 d. Between 1989 and 1998 8 out of 10 years tend towards an earlier onset of spring. The earliest date was observed in 1990. The relationships between air temperature and the beginning of growing season across Europe were investigated by canonical correlation analysis (CCA). The spatial variability of both fields can be described by 3 pairs of CCA patterns. The first pattern, which explains most of the variance, shows a uniform structure with above (below) normal temperatures in whole Europe and consequently an advanced (delayed) beginning of growing season. The other 2 patterns show regional differences in the anomaly fields. Whereas the second CCA pattern has a meridional structure, the third pattern shows a zonal distribution. In all cases the anomalies of the regional air temperature and of the beginning of growing season correspond very well. The correlation coefficients between the anomaly fields range between 0.90 and 0.66. For all patterns appropriate examples in the observed data were found.

KEY WORDS: Phenology · Growing season · Climate change · Air temperature · Canonical correlation analysis

Full text in pdf format

Published in CR Vol. 19, No. 3 (2002) on January 16
Print ISSN: 0936-577X; Online ISSN: 1616-1572. Copyright © Inter-Research, Oldendorf/Luhe, 2002

Copyright © 2003; Inter-Research
Webmaster: webmaster@int-res.com