Climate Research

Inter-Research
Climate Research

IR Home



CR
Home
Editors
Forthcoming
Information
Subscribe
CR SPECIAL 1
CR SPECIAL 2
CR SPECIAL 3
CR SPECIAL 4
CR SPECIAL 5
CR SPECIAL 6
CR SPECIAL 7
CR SPECIAL 8
CR SPECIAL 9
CR SPECIAL 10
CR SPECIAL 11


Journals
Home
MEPS
AME
CR
DAO
ESEP
Search
Subscribe

Book Series
EE Books
Top Books
ESEP Books
Order

EEIU Brochures
(pdf format)

Discussion Forums
Home

Research
Endangered Species Programs

Institutions
International Ecology Institute
Eco-Ethics International Union

Foundation
Otto Kinne Foundation

CR 16:79-99 (2001)

Abstract

The atmospheric response to a reduction in summer Antarctic sea-ice extent

D. A. Hudson*, B. C. Hewitson

Department of Environmental and Geographical Science, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa

*E-mail: hudson@egs.uct.ac.za

ABSTRACT: This paper examines the response of an atmospheric general circulation model (GCM) to a reduction in Antarctic sea-ice extent during summer. The control simulations are forced by prescribed, observed sea surface temperatures (SSTs) and sea-ice extents, while in the perturbation simulations sea-ice is reduced. The simulations are restarts of an AMIP (Atmospheric Model Intercomparison Project) configured simulation, and 2 summers (1979/80 and 1984/85) were selected for the study. The results show that a reduced sea-ice extent causes an increase in surface air temperatures in the regions where sea-ice was removed, and an associated decrease in pressure at high latitudes (around 60°S). The greatest increase in surface air temperatures are found north of the Weddell and Ross Seas. There is an increase in pressure between 30 and 50°S, which is associated with a strengthening and southward extension of the subtropical high pressure belt. The change in vertical velocities supports these results showing an intensification of the ascending limb of the Ferrel cell and a southward extension of the descending limb of the Hadley cell. In response to the perturbation there is an increase in wind speeds in mid/high latitudes (45 to 65°S), and a decrease in the westerly flow in the subtropics (30 to 40°S). The amplitude of circumpolar wave number 1 decreases in the perturbations compared to the controls in both years. This may be a result of reduced asymmetry of the SST distribution about the pole and the southward shift of the subtropical high-pressure belt. A cyclone analysis shows an increase in the number of midlatitude cyclones around Antarctica (60 to 70°S) and a decrease further north (40 to 60°S). The general pattern of changed circulation for the summer of 1984/85 is positioned slightly south of that in 1979/80, perhaps related to the less extensive sea-ice in 1984/85.

KEY WORDS: Antarctic sea-ice extent · General circulation model · Climate response

Full text in pdf format

Published in CR Vol. 16, No. 2 (2001) on January 18
Print ISSN: 0936-577X; Online ISSN: 1616-1572. Copyright © Inter-Research, Oldendorf/Luhe, 2001

Copyright © 2003; Inter-Research
Webmaster: webmaster@int-res.com