![]() |
Inter-Research |
IR Home
MEPS Home Editors Forthcoming Information Subscribe Journals Home MEPS AME CR DAO ESEP ESR Search Subscribe Book Series EE Books Top Books ESEP Books Order EEIU Brochures (pdf format) Discussion Forums Home Research IR Research Institutions International Ecology Institute Eco-Ethics International Union Foundation Otto Kinne Foundation ![]() | ![]() |
![]()
Description and application of the background irradiance gradientsingle turnover fluorometer (BIGSTf)Zackary I. Johnson*Massachusetts Institute of Technology (MIT), Department of Civil and Environmental Engineering, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA![]() ABSTRACT: Based on previous single turnover, pulse amplitude modulated, and fast repetition rate fluorometers, I describe a novel, bench top, single turnover fluorometer (BIGSTf) that quantifies multiple biophysical properties of Photosystem II (PSII) of phytoplankton over a programmable range of background light levels. The instrument measures the photochemical conversion efficiency (variable fluorescence/maximal fluorescence yield, Fv/Fm) and functional cross-sectional area of PSII (σPSII) over a background light gradient, and generates light-response curves of the biophysical properties of PSII. These curves can be used to assess variability in PSII structure and function or, in conjunction with oxygen- or carbon-derived photosynthesis-irradiance (P-E) curves, to evaluate how the properties of PSII may influence total photosynthetic rate and efficiency. Nitrogen-starved batch cultures of Skeletonema costatum are used to demonstrate the utility of these measurements by comparing the quantum yield of carbon uptake as a function of light (φC-E) and its saturation intensity index (Ek,φ) to Fv/Fm and σPSII as a function of light (Fv/Fm-E and σPSII-E) and their saturation intensity indices (Ek,PSII). It is shown that in addition to changes in dark-measured values (φC,max, Fv/Fm(0) and σPSII(0)) there are also significant changes in the shapes of φC-E, Fv/Fm-E and σPSII-E curves in response to N starvation. Changes in the shape of the curves (summarized by approximate 2-fold decreases in both Ek,φ and Ek,PSII) are consistent with the observed ~2-fold increase in σPSII (r2 = 0.74). These results suggest that in response to N starvation (1) most of the decrease in φC can be explained by PSII-dependent processes, (2) there are decreased saturation intensities of Fv/Fm and φC with concomitant increases in σPSII(0), and (3) the turnover rate (1/τ) does not change significantly. The PSII light-response curves, which can be measured quickly by the BIGSTf instrument, provide a direct means of evaluating the role that PSII plays in regulating photosynthetic rates and efficiency in aquatic environments.
KEY WORDS: Fluorescence · Photosystem II · Instrumentation · Fluorometer · Nitrogen starvation · Skeletonema costatum
Published in MEPS Vol.
283
(2004) on November 30
|
![]() | |
![]() |
Copyright © 2004; Inter-Research
Webmaster: webmaster@int-res.com |