IR Home
MEPS
Home
Editors
Forthcoming
Information
Subscribe
Journals
Home
MEPS
AME
CR
DAO
ESEP
ESR
Search
Subscribe
Book Series
EE Books
Top Books
ESEP Books
Order
EEIU Brochures
(pdf format)
Discussion Forums
Home
Research
IR Research
Institutions
International Ecology Institute
Eco-Ethics International Union
Foundation
Otto Kinne Foundation
 |  |
MEPS 281:27-35 (2004)
|
Abstract
|

Effects of phosphorus on the growth and nitrogen fixation rates of Lyngbya majuscula: implications for management in Moreton Bay, Queensland
Ibrahim Elmetri1,2,*, Peter R. F. Bell1
1Division of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia 2Present address: Institute of Technology and Engineering, Massey University, Turitea, New Zealand
*Email: i.elmetri@massey.ac.nz

ABSTRACT: Significant acetylene reduction and therefore N2 fixation was observed for Lyngbya majuscula only during dark periods, which suggests that oxygenic photosynthesis and N2 fixation are incompatible processes for
this species. Results from a series of batch and continuous-flow-culture reactor studies showed that the specific growth rate and N2 fixation rate of L. majuscula increased with phosphate (P-PO4) concentration up to a maximum
value and thereafter remained constant. The P-PO4 concentrations corresponding to the maximum N2 fixation and maximum growth rates were ~0.27 and ~0.18 µM respectively and these values are denoted as the saturation values for
N2 fixation and growth respectively. Regular monitoring studies in Moreton Bay, Queensland, show that concentrations of P-PO4 generally exceed these saturation values over a large portion of the Bay and therefore, the growth of the
bloom-forming L. majuscula is potentially maximised throughout much of the Bay by the elevated P-PO4 concentrations. Results from other studies suggest that the elevated P-PO4 concentrations in the Bay can be largely
attributed to discharges from waste-water treatment plants (WWTPs), and thus it is proposed that the control of the growth of L. majuscula in Moreton Bay will require a significant reduction in the P load from the WWTP discharges. If the current
strategy of N load reduction for these discharges is maintained in the absence of substantial P load reduction, it is hypothesised that the growth of L. majuscula and other diazotrophs in Moreton Bay will increase in the future.
KEY WORDS: Lyngbya majuscula · Nitrogen fixation · Phosphorus · Continuous culture · Growth kinetics · Moreton Bay
Full text in pdf format

Published in MEPS Vol.
281
(2004) on November 1
Print ISSN: 0171-8630; Online ISSN: 1616-1599.
Copyright © Inter-Research, Oldendorf/Luhe, 2004
|