IR Home
MEPS
Home
Editors
Forthcoming
Information
Subscribe
Journals
Home
MEPS
AME
CR
DAO
ESEP
ESR
Search
Subscribe
Book Series
EE Books
Top Books
ESEP Books
Order
EEIU Brochures
(pdf format)
Discussion Forums
Home
Research
IR Research
Institutions
International Ecology Institute
Eco-Ethics International Union
Foundation
Otto Kinne Foundation
 |  |
MEPS 281:131-143 (2004)
|
Abstract
|

Moult cycle-related changes in feeding rates of larval krill Meganyctiphanes norvegica and Thysanoessa spp.
Katrin Schmidt1,2,*, Geraint A. Tarling2, Nicola Plathner1, Angus Atkinson2
1Institute for Baltic Sea Research Warnemünde, Seestrasse 15, 18119 Rostock, Germany 2British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
*Email: kasc@bas.ac.uk

ABSTRACT: Knowledge of crustacean moulting is derived mainly from benthic decapods, which often show profound changes in physiology and behaviour through the moult cycle. In contrast, euphausiids are suggested to be little impaired by moulting, enabling a
swarming pelagic life. The aim of this study was to quantify moult cycle-related changes in the feeding activity of 2 euphausiids, Meganyctiphanes norvegica and Thysanoessa spp. Late furcilia larvae and early postlarvae were kept
individually over 6 to 7 wk and fed with either a high or low concentration of Artemia salina nauplii or particulate fish food. The intermoult period, ~9 d for M. norvegica and ~8 d for Thysanoessa spp., increased with body weight,
but did not differ with food source. Moulting was partially synchronised, with up to 50% of the individuals moulting within 48 h of each other. Daily feeding rates on A. salina decreased on the day before moulting, but increased during the next few
days with highest values on Days 1 to 3 after moulting. The deviation from the mean feeding rate over the whole moult was more pronounced at the higher food concentration, reaching up to 40%. Likewise, the defecation volume was reduced on the moulting day
and the following day to ~50% of the mean, but increased to 180% of the mean on Day 3 after moulting. Thus, the moult cycle induces significant changes in feeding rates of larval euphausiids with a similar succession of events and intensity as observed in
decapods. Feeding rates, extrapolated from spot measurements on a few individuals, are unlikely to represent average values over the whole moult cycle, especially when populations moult synchronously. We propose a protocol to increase the precision of
field estimates on feeding rates.
KEY WORDS: Moulting · Feeding · Defecation · Krill · Larvae · Meganyctiphanes norvegica · Thysanoessa spp.
Full text in pdf format

Published in MEPS Vol.
281
(2004) on November 1
Print ISSN: 0171-8630; Online ISSN: 1616-1599.
Copyright © Inter-Research, Oldendorf/Luhe, 2004
|