IR Home
MEPS
Home
Editors
Forthcoming
Information
Subscribe
Journals
Home
MEPS
AME
CR
DAO
ESEP
ESR
Search
Subscribe
Book Series
EE Books
Top Books
ESEP Books
Order
EEIU Brochures
(pdf format)
Discussion Forums
Home
Research
IR Research
Institutions
International Ecology Institute
Eco-Ethics International Union
Foundation
Otto Kinne Foundation
 |  |
MEPS 271:99-111 (2004)
|
Abstract
|

Effect of advective pore water transport on distribution and degradation of diatoms in permeable North Sea sediments
Sandra Ehrenhauss1,*, Ursula Witte1, Solveig I. Bühring1, Markus Huettel1,2
1Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
2Florida State University, Department of Oceanography, Tallahassee, Florida 32306-4320, USA
*Email: sehrenha@gmx.de

ABSTRACT: This contribution addresses the incorporation and degradation of diatoms in coastal fine, medium and coarse North Sea sands. During 3 cruises in 2001 to a highly dynamic, non-depositional area in the southern German Bight, the transport of
13C-labeled diatoms into these different permeable sand beds was assessed by in situ and on-board chamber experiments. Enhanced advective transport of diatom frustules and 13C-enriched diatom carbon into sandy sediments with
increasing permeability was demonstrated. Highest transport rates were observed in medium and coarse sand, where 6% of the added algae were found below 1 cm after 20 h incubation. In the coarse sand, the high ratio between sand grain and particle size
enhanced the delivery of algae to the sediment, but seemed to reduce the filtration efficiency and thus algal retention. Broken frustules of Thalassiosira sp., the diatom which dominated the diatom spring bloom in 2001, were found in the medium and
coarse sand in autumn. This indicates that advective transport and, to some limited extent, bioturbation, deposits phytoplankton into these sandy sediments, where strong bottom currents theoretically would prevent the sedimentation of low-density organic
material. The trapped cells are rapidly degraded, as observed in our chamber experiments, where 28% of the added diatom carbon was released as dissolved organic carbon (DOC) per day after the third incubation day. We conclude that permeable sediments
represent expansive coastal filter systems, where high advective flushing rates boost remineralization of trapped algal cells. These processes promote a fast recycling of organic matter and, thus, may be important for maintaining high primary production
rates in shelf environments.
KEY WORDS: German Bight · Permeable shelf sediments · Pore water flow · Planktonic diatoms · Benthic diatoms · 13C-labeling · Remineralization · Carbon cycling
Full text in pdf format

Published in MEPS Vol.
271
(2004) on April 28
Print ISSN: 0171-8630; Online ISSN: 1616-1599.
Copyright © Inter-Research, Oldendorf/Luhe, 2004
|