Marine Ecology Progress Series

Inter-Research
Marine Ecology Progress Series

IR Home



MEPS
Home
Editors
Forthcoming
Information
Subscribe


Journals
Home
MEPS
AME
CR
DAO
ESEP
ESR
Search
Subscribe

Book Series
EE Books
Top Books
ESEP Books
Order

EEIU Brochures
(pdf format)

Discussion Forums
Home

Research
IR Research

Institutions
International Ecology Institute
Eco-Ethics International Union

Foundation
Otto Kinne Foundation

MEPS 269:61-68 (2004)

Abstract

Role of a large marine protected area for conserving landscape attributes of sand habitats on Georges Bank (NW Atlantic)

James Lindholm1,3,*, Peter Auster1, Page Valentine2

1National Undersea Research Center at the University of Connecticut, 1080 Shennecossett Rd., Groton, Connecticut 06340, USA
2US Geological Survey, 384 Woods Hole Road, Woods Hole, Massachusetts 02543, USA
3Present address: Pfleger Institute of Environmental Research, 901-B Pier View Way, Oceanside, California 92054, USA

*Email: james@pier.org

ABSTRACT: Mobile fishing gear reduces seafloor habitat complexity through the removal of structure-building fauna, e.g. emergent organisms that create pits and burrows, as well as by smoothing of sedimentary bedforms (e.g. sand ripples). In this study, we compared the relative abundance of microhabitat features (the scale at which individual fish associate with seafloor habitat) inside and outside of a large fishery closed area (6917 km2) on Georges Bank. Starting in late 1994, the closed area excluded all bottom tending fishing gear capable of capturing demersal fishes. A total of 32 stations were selected inside and outside of the closed area in sand habitats. Video and still photographic transects were conducted at each station using the Seabed Observation and Sampling System (SEABOSS). Seven common (i.e. featureless sand, rippled sand, sand with emergent fauna, bare gravelly sand, gravelly sand with attached-erect fauna, whole shell, shell fragment) and 2 rare (sponges, biogenic depressions) microhabitat types were compared separately. Results showed significant differences in the relative abundance of the shell fragment and sponge microhabitat types between fished and unfished areas. The lack of differences for the other microhabitats may indicate that the level of fishing activity in the area is matched by the system's ability to recover.

KEY WORDS: Microhabitat · Fishing gear · Fishing impacts · Photography · Video

Full text in pdf format

Published in MEPS Vol. 269 (2004) on March 25
Print ISSN: 0171-8630; Online ISSN: 1616-1599. Copyright © Inter-Research, Oldendorf/Luhe, 2004

Copyright © 2004; Inter-Research
Webmaster: webmaster@int-res.com