Marine Ecology Progress Series

Inter-Research
Marine Ecology Progress Series

IR Home



MEPS
Home
Editors
Forthcoming
Information
Subscribe


Journals
Home
MEPS
AME
CR
DAO
ESEP
Search
Subscribe

Book Series
EE Books
Top Books
ESEP Books
Order

EEIU Brochures
(pdf format)

Discussion Forums
Home

Research
Endangered Species Programs

Institutions
International Ecology Institute
Eco-Ethics International Union

Foundation
Otto Kinne Foundation

MEPS 240:93-104 (2002)

Abstract

Relative importance of macrophyte leaves for nitrogen uptake from flood water in tidal salt marshes

Tjeerd J. Bouma*, Johan Stapel, Jenny van der Heiden, Bas Koutstaal, Jos van Soelen, Lennart van IJzerloo

Netherlands Institute of Ecology (NIOO-CEMO), PO Box 140, 4400 AC Yerseke, The Netherlands

*E-mail: bouma@cemo.nioo.knaw.nl

ABSTRACT: Nitrogen limits plant growth in most salt marshes. As foliar N-uptake makes a significant contribution to the overall N-requirements of submerged plant species such as (e.g.) seagrasses, we tested if foliar N-uptake was also significant in Spartina anglica Hubbard, a species that dominates the lowest, regularly flooded areas of salt marshes in the SW Netherlands. Foliar N-uptake was compared for plants from 2 estuaries with contrasting N-loads in their water column. N-uptake was quantified by (1) flooding detached leaves in test tubes, (2) spraying leaves still attached to the plants, and (3) flooding whole plants, with solutions containing either 15NO3- or 15NH4+. We found that detaching the leaves from the plant underestimated NH4+ uptake by between 30 and 50%. Higher salinity also reduced foliar N-uptake. Uptake rates were higher for NH4+ than for NO3-, as has been found for many submerged and terrestrial angiosperms and marine algae. Methodology also had a major effect on the uptake rate, with flooding of intact plants yielding higher uptake rates than spraying attached leaves. However, in general, foliar N-uptake rates were low at the NO3- and NH4+ concentrations that are actually present in the tidal waters during the growth season, and may at most contribute to around 10% of the growth requirement. This percentage is much less than for seagrasses, but in line with data for some terrestrial systems. We conclude that in contrast to seagrasses, foliar N-uptake does not form a significant contribution to the overall N-requirements of S. anglica. This low N-uptake capacity of the S. anglica leaves appears to be a consequence of adaptations to survive tidal flooding.

KEY WORDS: Foliar uptake · Nitrate · Ammonium · Tidal marsh · 15N labelling

Full text in pdf format

Published in MEPS Vol. 240 (2002) on September 12
Print ISSN: 0171-8630; Online ISSN: 1616-1599. Copyright © Inter-Research, Oldendorf/Luhe, 2002

Copyright © 2003; Inter-Research
Webmaster: webmaster@int-res.com