![]() |
Inter-Research |
IR Home
MEPS Home Editors Forthcoming Information Subscribe Journals Home MEPS AME CR DAO ESEP Search Subscribe Book Series EE Books Top Books ESEP Books Order EEIU Brochures (pdf format) Discussion Forums Home Research Endangered Species Programs Institutions International Ecology Institute Eco-Ethics International Union Foundation Otto Kinne Foundation ![]() | ![]() |
![]()
Otolith formation and endolymph chemistry: a strong correlation between the aragonite saturation state and pH in the endolymph of the trout otolith organYasuaki Takagi*Otsuchi Marine Research Center, Ocean Research Institute, The University of Tokyo, Akahama 2-106-1, Otsuchi, Iwate 028-1102, Japan![]() ABSTRACT: This is the first report on the aragonite saturation state of the endolymph in a single fish species, the rainbow trout Oncorhynchus mykiss, based on the direct quantification of electrolyte concentrations in the saccular endolymph. The Ca2+ level, CO2 partial pressure and pH of the saccular endolymph in 1+ and 2+ yr old trout were simultaneously determined using an automatic pH/blood gas/electrolyte analyzer. From the values of CO2 partial pressure and pH, HCO3- and CO32- levels were obtained using the Henderson-Hasselbalch equation. In addition, Na, K, Cl, Mg and inorganic P levels were measured in order to determine ionic strength of the endolymph. The aragonite supersaturation rate (Sa) was calculated from the Ca2+ and CO32- concentrations and the ionic strength. In both age groups, Ca2+ and CO32- concentrations were around 0.75 and 0.68 mmol l-1, respectively. Small differences in Na, P, and HCO3- concentrations were observed between the 2 age groups, but endolymph ionic strength was similar. The Sa ratio was 2.885 to 3.507 in 1+ yr old fish and 2.027 to 4.303 in 2+ yr old fish. Therefore, the endolymph is supersaturated with respect to aragonite. Sa was significantly correlated with CO32- levels, which were largely determined by pH. As a consequence, Sa was strongly dependent on pH, indicating that endolymph pH-regulation is important in the aragonite crystallization of the otolith.
KEY WORDS: Otolith · Endolymph · Chemical composition · Aragonite saturation state · Teleost
Published in MEPS Vol.
231
(2002) on April 23
|
![]() | |
![]() |
Copyright © 2003; Inter-Research
Webmaster: webmaster@int-res.com |