IR Home
MEPS
Home
Editors
Forthcoming
Information
Subscribe
Journals
Home
MEPS
AME
CR
DAO
ESEP
ESR
Search
Subscribe
Book Series
EE Books
Top Books
ESEP Books
Order
EEIU Brochures
(pdf format)
Discussion Forums
Home
Research
IR Research
Institutions
International Ecology Institute
Eco-Ethics International Union
Foundation
Otto Kinne Foundation
 |  |
MEPS 220:119-130 (2001)
|
Abstract
|

Photosynthetic response of Amphibolis antarctica and Posidonia australis to temperature and desiccation using chlorophyll fluorescence
S. Seddon1,2,*, A. C. Cheshire2
1Department of Environmental Biology, University of Adelaide, Adelaide, Australia 5005
2South Australian Research and Development Institute (SARDI) (Aquatic Sciences), PO Box 120, Henley Beach, Adelaide, Australia 5022
*E-mail: seddon.stephanie@saugov.sa.gov.au Present address: SARDI

ABSTRACT: Exposure to desiccation during heat wave conditions (≥35°C) is considered the most likely cause of a sudden dieback of 12700 ha of intertidal and shallow subtidal seagrasses along 95 km of coast in Spencer Gulf, South Australia. To investigat
this hypothesis experiments in a constant environment (CE) room were designed to test the tolerances of 2 shallow subtidal species, Amphibolis antarctica and Posidonia australis, to desiccation for a range of temperatures and exposure times.
The first experiment compared the effects of increasing exposure time (15, 30, 45, 60, 80 and 100 min) on photosynthetic efficiency at a relatively mild summer temperature (CE room set to 24°C). The second experiment compared the effects of increasing
temperature (CE room temperature set to 18, 24, 28 or 32°C) and exposure time (0, 20 and 60 min). Photosynthetic efficiency, damage and extent of recovery were determined by chlorophyll fluorescence measured using a pulse amplitude modulated fluorometer.
The ability of both species to recover from desiccation decreased at higher temperatures and longer exposure time, with P. australis more susceptible to desiccation than A. antarctica. The results indicate that higher temperatures alone did
not significantly affect photosynthetic efficiency for either species. Four main responses for maximal quantum yield over a time series were apparent: (1) no difference from controls, (2) a significant degree of photosystem II inhibition followed by
complete or (3) partial recovery, and (4) complete inhibition of photosystem II with no recovery. Short exposures to desiccation at lower temperatures generally resulted in moderate stress followed by complete recovery, while at higher temperatures there
was only partial recovery, particularly for P. australis. However, both species exposed for 1 h at the highest temperature showed no signs of photosynthetic recovery up to18 h after re-immersion, suggesting that significant seagrass dieback is
plausible under these conditions in situ, particularly if the seagrasses were exposed to repeated desiccation on consecutive days.
KEY WORDS: Seagrass dieback · Pulse amplitude modulated fluorometer · Chlorophyll fluorescence · Inhibition · Recovery
Full text in pdf format

Published in MEPS Vol.
220
(2001) on September 27
Print ISSN: 0171-8630; Online ISSN: 1616-1599.
Copyright © Inter-Research, Oldendorf/Luhe, 2001
|