![]() |
Inter-Research |
IR Home
MEPS Home Editors Forthcoming Information Subscribe Journals Home MEPS AME CR DAO ESEP Search Subscribe Book Series EE Books Top Books ESEP Books Order EEIU Brochures (pdf format) Discussion Forums Home Research Endangered Species Programs Institutions International Ecology Institute Eco-Ethics International Union Foundation Otto Kinne Foundation ![]() | ![]() |
![]()
Nitrogen acquisition, storage, and use by the co-occurring Mediterranean seagrasses Cymodocea nodosa and Zostera noltiiGeorge P. Kraemer*, Lucia MazzellaLaboratorio di Ecologia del Benthos, Stazione Zoologica di Napoli, Punta San Pietro, I-80077 Ischia (NA), Italy![]() ABSTRACT: Shoot density, shoot, root, and rhizome tissue biomass and N content, and N assimilation by leaf and root tissues of the 2 co-occurring seagrasses Cymodocea nodosa and Zostera noltii were measured over the course of a year at a central Mediterranean site. Concentrations of dissolved inorganic nitrogen (DIN; NH4+, [NO3- + NO2-]) co-varied in the canopy water. Sediment NH4+ concentration varied within the top 10 cm of the sediments, while those of [NO3- + NO2-] were virtually invariant. C. nodosa and Z. noltii appeared to contribute to the replenishment of the sediment DIN reservoir as growth declined and senescence ensued in the fall; the peak in plant-based N preceded the peak of sediment DIN by 1 to 2 mo. C. nodosa had a June peak in glutamine synthetase (GS) activity in leaf tissue, and showed greater variation over the course of the study than did Z. noltii, for which there was a February peak in shoot GS activity. The leaves, rhizomes, and roots within each species exhibited different patterns of tissue N content over the course of the year, indicating different strategies of N storage and subsequent use. Within a species, assimilated N was first allocated to leaves, then rhizomes and roots. Leaves, in addition to rhizomes, appear to have a N storage function. C. nodosa maintained high tissue N levels for longer periods than did Z. noltii, suggesting that clonal modules of C. nodosa were more physiologically integrated than modules of Z. noltii. The average potential for N assimilation through Z. noltii tissues was estimated to be roughly 43% of the total for C. nodosa and Z. noltii.
KEY WORDS: Cymodocea · Zostera · Seagrass · Nitrogen · Glutamine synthetase
Published in MEPS Vol.
183
(1999) on July 6
|
![]() | |
![]() |
Copyright © 2003; Inter-Research
Webmaster: webmaster@int-res.com |