Marine Ecology Progress Series

Inter-Research
Marine Ecology Progress Series

IR Home



MEPS
Home
Editors
Forthcoming
Information
Subscribe


Journals
Home
MEPS
AME
CR
DAO
ESEP
Search
Subscribe

Book Series
EE Books
Top Books
ESEP Books
Order

EEIU Brochures
(pdf format)

Discussion Forums
Home

Research
Endangered Species Programs

Institutions
International Ecology Institute
Eco-Ethics International Union

Foundation
Otto Kinne Foundation

MEPS 180:149-160 (1999)

Abstract

Dissolved organic carbon cycling in a subtropical seagrass-dominated lagoon

Susan Ziegler*, Ronald Benner

Marine Science Institute, University of Texas at Austin, 750 Channelview Drive, Port Aransas, Texas 78373, USA

*Present address: Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road N.W., Washington, DC 20015, USA. E-mail: ziegler@gl.ciw.edu

ABSTRACT: The cycling of dissolved organic matter (DOM) and its significance to ecosystem metabolism was studied over a 16 mo period in a Thalassia testudinum dominated meadow. The benthos was usually net autotrophic (annual gross primary production to respiration ratio [P:R] = 1.3) while water column respiration (R) exceeded gross primary production (annual P:R = 0.3). Net fluxes of dissolved organic carbon (DOC) from the benthos primarily occurred in the light (0 to 18 mmol C m-2 d-1) and from seagrass-dominated areas, suggesting that release of DOC was mainly due to seagrass exudation. Net benthic DOC fluxes measured in the light were significantly correlated (p < 0.0001, n = 61) with benthic net primary production (NPP). Average daily benthic NPP was significantly correlated to water column R (p < 0.002, n = 7) and appeared to explain about 88% of the variability in daily water column R. Estimates of bacterioplankton growth efficiencies ranged from 21 to 38%, with peaks corresponding to maximal benthic DOC fluxes in spring and summer. Bacterioplankton were responsible for the remineralization of most (>50%) of the DOC released from the benthos on a daily basis. Annual estimates of bacterioplankton C demand, based on water column R (~8 mol C m-2 yr-1), represented >50% of the benthic NPP (~14 mol C m-2 yr-1). These measurements indicate a stronger linkage between benthic and water column processes than previously believed, and it appears that water column heterotrophic processes are largely dependent upon seagrass exudation.

KEY WORDS: Seagrass · Carbon cycling · Exudation · DOC

Published in MEPS Vol. 180 (1999) on May 3
Print ISSN: 0171-8630; Online ISSN: 1616-1599. Copyright © Inter-Research, Oldendorf/Luhe, 1999

Copyright © 2003; Inter-Research
Webmaster: webmaster@int-res.com