Aquatic Microbial Ecology

Inter-Research
Aquatic Microbial Ecology

IR Home



AME
Home
Editors
Forthcoming
Information
Subscribe


Journals
Home
MEPS
AME
CR
DAO
ESEP
ESR
Search
Subscribe

Book Series
EE Books
Top Books
ESEP Books
Order

EEIU Brochures
(pdf format)

Discussion Forums
Home

Research
IR Research

Institutions
International Ecology Institute
Eco-Ethics International Union

Foundation
Otto Kinne Foundation

AME 37:197-208 (2004)

Abstract

Effects of solar radiation on the utilization of dissolved organic matter (DOM) from two headwater streams

Sherri Brisco, Susan Ziegler*

Department of Biology, Science and Engineering Building 601, University of Arkansas, Fayetteville, Arkansas 72701, USA

*Corresponding author. Email: susanz@uark.edu

ABSTRACT: The effect of solar radiation on dissolved organic matter (DOM) utilization was studied in 2 contrasting streams in Arkansas, USA, from June 2002 through July 2003. Moores Creek is an agricultural stream with elevated nutrient and dissolved organic carbon (DOC) concentrations. Huey Hollow is a forest stream with low nutrient and DOC concentrations. A series of in situ experiments were conducted seasonally in both streams to assess how exposure of DOM to solar radiation impacted its utilization, measured as bacterial production following exposure and subsequent inoculation with whole stream water. Exposure of DOM to solar radiation significantly decreased its utilization during most seasons in both streams. Both streams experienced one period when exposure of DOM significantly increased bacterial production; during these periods, DOM appeared to be the least bioavailable and most photochemically reactive. In spring, ultraviolet absorption coefficients, normalized to DOC concentration, suggested a greater proportion of photoreactive DOM in Huey Hollow. Additionally the δ13C signature of DOM (δ13CDOM) suggested the largest terrestrial input occurred in spring when exposure of DOM significantly increased bacterial production. Both the proportion of photoreactive DOM and δ13CDOM exhibited little seasonal variation in Moores Creek; however, the relative bioavailability of DOM did vary, suggesting some change in DOM composition. In spring the relative bioavailability of DOM was lowest in Moores Creek, and DOM exposure appeared to have further reduced its bioavailability. Elevated ammonium concentrations at this time suggest photochemically enhanced humification may be an important mechanism influencing DOM cycling, and warrants study in streams impacted by agricultural land use.

KEY WORDS: Dissolved organic matter (DOM) · Ultraviolet radiation · Streams · Bioavailability

Full text in pdf format

Published in AME Vol. 37, No. 2 (2004) on November 11
Print ISSN: 0948-3055; Online ISSN: 1616-1564. Copyright © Inter-Research, Oldendorf/Luhe, 2004

Copyright © 2004; Inter-Research
Webmaster: webmaster@int-res.com