Aquatic Microbial Ecology

Inter-Research
Aquatic Microbial Ecology

IR Home



AME
Home
Editors
Forthcoming
Information
Subscribe


Journals
Home
MEPS
AME
CR
DAO
ESEP
Search
Subscribe

Book Series
EE Books
Top Books
ESEP Books
Order

EEIU Brochures
(pdf format)

Discussion Forums
Home

Research
Endangered Species Programs

Institutions
International Ecology Institute
Eco-Ethics International Union

Foundation
Otto Kinne Foundation

AME 33:67-75 (2003)

Abstract

Marine snow microbial communities: scaling of abundances with aggregate size

Thomas Kiørboe*

Danish Institute for Fisheries Research, Kavalergården 6, 2920 Charlottenlund, Denmark

*Email: tk@dfu.min.dk

ABSTRACT: Marine aggregates are inhabited by diverse microbial communities, and the concentration of attached microbes typically exceeds concentrations in the ambient water by orders of magnitude. An extension of the classical Lotka-Volterra model, which includes 3 trophic levels (bacteria, flagellates, ciliates) and considers colonization, detachment, growth and predator-prey interactions on the surface of the particle, was used to examine the processes that govern abundances of attached micro-organisms. Effects of sinking on colonization rates as well as the fractal nature of natural aggregates were also taken into account. As input for the model, I used experimentally determined encounter and detachment rates, and density-dependent growth and grazing rates, as well as information on relevant properties of natural aggregates, all taken from the literature. The model reproduces the temporal development of attached populations of bacteria, flagellates, and ciliates, as observed in experimental systems, and also predicts steady-state abundances of attached micro-organisms that are close to those observed on field-collected aggregates. The model suggests that attached bacterial populations are controlled by flagellate grazing, while flagellate and ciliate populations are governed by colonization and detachment. The model also suggests that microbial populations are turned over rapidly (1 to 20 times d-1) due to continued colonization and detachment. The model overpredicts somewhat the scaling of microbial abundances with aggregate size observed in field-collected aggregates. This may be because it disregards the aggregation/disaggregation dynamics of aggregates, as well as interspecific interactions between bacteria.

KEY WORDS: Microbial population dynamics · Colonization · Grazing rates · Detachment rates · Growth rates · Fluid dynamics

Full text in pdf format

Published in AME Vol. 33, No. 1 (2003) on August 21
Print ISSN: 0948-3055; Online ISSN: 1616-1564. Copyright © Inter-Research, Oldendorf/Luhe, 2003

Copyright © 2004; Inter-Research
Webmaster: webmaster@int-res.com