Aquatic Microbial Ecology

Inter-Research
Aquatic Microbial Ecology

IR Home



AME
Home
Editors
Forthcoming
Information
Subscribe


Journals
Home
MEPS
AME
CR
DAO
ESEP
Search
Subscribe

Book Series
EE Books
Top Books
ESEP Books
Order

EEIU Brochures
(pdf format)

Discussion Forums
Home

Research
Endangered Species Programs

Institutions
International Ecology Institute
Eco-Ethics International Union

Foundation
Otto Kinne Foundation

AME 32:23-37 (2003)

Abstract

Heterotrophic nanoflagellate enhancement of bacterial growth through nutrient remineralization in chemostat culture

Karen E. Selph*, Michael R. Landry, Edward A. Laws

Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, Hawaii 96822, USA

*Email: kselph@soest.hawaii.edu

ABSTRACT: Heterotrophic nanoflagellates are the principal consumers of picoplankton in the ocean. Their role as nutrient remineralizers is also well established. However, the coupled interactions between grazer consumption and prey growth are less well understood. In this work, we demonstrate a tight coupling among flagellate grazing, nitrogen remineralization, and prey growth, resulting in bacterial growth rates averaging 2- to 14-fold higher in the presence of flagellate grazers. These results were obtained using 2-stage, nitrogen-limited chemostats containing a mixed culture of heterotrophic bacteria enriched from seawater and Paraphysomonas bandaiensis, a chrysomonad flagellate. Abundance and biovolume of the flagellates were monitored on a daily basis, as was bacterial abundance. Grazing rates were measured using short-term tracer uptake experiments (fluorescently-labeled bacteria and beads), and these data were used to calculate gross bacterial growth rates in the presence of grazers. A mass balance approach was used to estimate reduced nitrogen regenerated by the protist and nitrogen demand of the heterotrophic bacteria. These independent methods of assessing grazer growth and feeding, coupled with estimates of flagellate gross growth efficiency, provided strong, internally consistent constraints on the estimates of bacterial growth rates in the presence of grazers. Under these culture conditions, P. bandaiensis had a carbon-based gross growth efficiency averaging 28%. This work shows that independently measured grazing rates are essential in protist culture work if system dynamics are to be understood. It also underscores the necessity of including protist remineralization pathways in models if realistic simulations are to be obtained.

KEY WORDS: Nanoflagellate grazing · Bacterial growth rates · Nutrient remineralization · Chemostats · Flow cytometry · FLB · Gross growth efficiency

Full text in pdf format

Published in AME Vol. 32, No. 1 (2003) on May 12
Print ISSN: 0948-3055; Online ISSN: 1616-1564. Copyright © Inter-Research, Oldendorf/Luhe, 2003

Copyright © 2003; Inter-Research
Webmaster: webmaster@int-res.com