Aquatic Microbial Ecology Inter-Research
Aquatic Microbial Ecology

IR Home



AME
Home
Editors
Forthcoming
Information
Subscribe


Journals
Home
MEPS
AME
CR
DAO
ESEP
Search
Subscribe

Book Series
EE Books
Top Books
ESEP Books
Order

Discussion Forums
Home

Research
Endangered Species Programs

Institutions
International Ecology Institute
Eco-Ethics International Union

Foundation
Otto Kinne Foundation

AME 28:1-12 (2002)

Abstract

Potential N2 fixation by sulfate-reducing bacteria in a marine intertidal microbial mat

T. F. Steppe*, H. W. Paerl

University of North Carolina at Chapel Hill, Institute of Marine Sciences, 3431 Arendell Street, Morehead City, North Carolina 28557, USA

*E-mail: tfs6030@email.unc.edu

ABSTRACT: The first report that sulfate-reducing bacteria (SRB) can fix N2 was published a half century ago. Over the last 50 yr, it has slowly emerged that N2 fixation is widespread among Gram-negative, mesophilic SRB. However, the ecological role of SRB N2 fixation is not well understood. In some marine systems, SRB may contribute significantly to observed N2 fixation (acetylene reduction). To date, evidence of SRB N2 fixation has relied on inferring the results from the use of metabolic inhibitors and most probable number counts. This study attempted to assess more directly the role of SRB N2 fixation in a temperate marine microbial mat system within the Rachel Carson National Estuarine Research Reserve (RCNERR; Beaufort, North Carolina, USA). The SRB inhibitor sodium molybdate (a structural analog of sulfate) was employed to characterize potential SRB N2 fixation at night. Sodium molybdate inhibited nighttime nitrogenase activity (NA) by as much as 64%. Sodium molybdate had no effect on daytime NA. Reverse transcription-polymerase chain reaction (RT-PCR) was employed to characterize organisms expressing the dinitrogenase reductase gene (nifH), an essential gene for N2 fixation. Several nifH sequences obtained from RT-PCR were highly similar to the nifH sequences of anaerobic organisms, including several SRB. Estimates of ATP production, based on sulfate reduction rates, imply sulfate reduction is capable of supporting molybdate-inhibited NA. The evidence suggests that SRB may contribute to N2 fixation in the RCNERR mats.

KEY WORDS: Microbial mats · N2 fixation · Sulfate-reducing bacteria · nifH · PCR · RT-PCR · Sodium molybdate

Full text in pdf format

Published in AME Vol. 28, No. 1 (2002) on May 16
Print ISSN: 0948-3055; Online ISSN: 1616-1564. Copyright © Inter-Research, Oldendorf/Luhe, 2002

Copyright © 2002; Inter-Research
Webmaster: webmaster@int-res.com