Aquatic Microbial Ecology Inter-Research
Aquatic Microbial Ecology

IR Home



AME
Home
Editors
Forthcoming
Information
Subscribe


Journals
Home
MEPS
AME
CR
DAO
ESEP
Search
Subscribe

Book Series
EE Books
Top Books
Order

Discussion Forums
Home

Research
Endangered Species Programs

Institutions
International Ecology Institute
Eco-Ethics International Union

Foundation
Otto Kinne Foundation

AME 23:283-292 (2001)

Abstract

Bacteria-flagellate interactions in the microbial food web of the oligotrophic subtropical North Pacific

Albert Calbet*, Michael R. Landry, Scott Nunnery

Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, Hawaii 96822, USA

*Present address: Institut de Ciències del Mar, CSIC, Pg. Joan de Borbó s/n, 08039 Barcelona, Spain. E-mail: acalbet@icm.csic.es

ABSTRACT: The number and relative strengths of trophic linkages in the microbial community of the oligotrophic subtropical North Pacific were studied in 12 experiments from August 1998 to April 1999 at Stn ALOHA (100 km north of Oahu, Hawaii). Collected seawater was manipulated by sequential size-fractionation to truncate the food web at different organism sizes (1, 2, 5, 10 and 20 µm), and the response variable, net bacterial growth rate, was assessed from flow cytometric analyses of the changes in cell abundance (combined heterotrophic bacteria and Prochlorococcus) after 24 h incubations. The corresponding size structure of the protistan grazer assemblage was measured microscopically. With a coefficient of variability of 7% and a 2-fold range overall, total bacterial abundance displayed relatively low temporal variability. Despite the relative constancy of standing stock, however, microbial community interactions varied markedly among the experiments. For experiments conducted at higher levels of bacterial biomass, the bacteria showed little growth response to the removal of predators and may have been resource limited. In contrast, the growth response was highest when conditions were defined by relatively low bacterial biomass and high heterotrophic flagellate biomass. Trophic cascades were evident only at intermediate to high levels of bacterial biomass, and may appear in transitions between high and low levels of bacterial biomass. These results suggest that resources and predators oscillate in importance in regulating open-ocean microbial populations. In such oscillations, the indirect influences of a protistan predatory chain may determine the balance between resource limitation and strong predatory control.

KEY WORDS: Planktonic food web · Microbial loop · Flagellates · Bacteria · Top-down · Bottom-up · North Pacific Subtropical Gyre

Full text in pdf format

Published in AME Vol. 23, No. 3 (2001) on February 28
ISSN: 0948-3055. Copyright © Inter-Research, Oldendorf/Luhe, 2001

Copyright © 2001; Inter-Research
Webmaster: webmaster@int-res.com