Aquatic Microbial Ecology Inter-Research
Aquatic Microbial Ecology

Inter-Research



AME
Home
Editors
Forthcoming
Information
Subscribe


Journals
Home
MEPS
AME
CR
DAO
Search
Subscribe

Books
Top Books
EE Books
Order

ECI
Home

EEIU
Home

AME 18:227-233 (1999)

Abstract

High speed marine bacteria use sodium-ion and proton driven motors

James G. Mitchell*, Gregory M. Barbara

School of Biological Sciences, Flinders University of South Australia, GPO Box 2100, Adelaide, South Australia 5001, Australia

*E-mail: jim.mitchell@flinders.edu.au

ABSTRACT: The ocean's strong ionic environment may be important for motility in marine bacteria. This is because flagellar motors are powered by dissipation of ion gradients across their cell membranes. We tested how much the 2 known motor systems contributed to the high speed motility (>100 µm s-1) found in marine bacterial communities and isolates. Monensin, carbonylcyanide-m-chlorophenylhydrozone (CCCP) and amiloride were used on Escherichia coli, Shewanella putrefaciens, Alteromonas haloplanktis, a marine isolate (BBAT1) and marine bacterial communities to uncouple sodium-ion and proton gradients from motility. E. coli motility was stopped by 10 µM CCCP. Use of any of the 3 uncouplers alone slowed, but did not stop, S. putrefaciens, A. haloplanktis and a community of marine bacteria. A combination of 20 µM CCCP and 20 µM monensin stopped S. putrefaciens and A. haloplanktis. The same concentration combination reduced marine community speeds by half, but stopped few cells. Above uncoupler concentrations of 30 µM speed remained unchanged at about 20 µm s-1 for marine bacterial communities. Sodium-ion motors were responsible for about 60% of marine bacterial speed. From the results it was concluded that most high speed marine bacterial community members used sodium and proton motors simultaneously.

KEY WORDS: Marine bacterial motors · Motility · Proton · Sodium-ion · Uncouplers

Published in AME Vol. 18, No. 3 (1999) on August 20
ISSN: 0948-3055. Copyright © Inter-Research, Oldendorf/Luhe, 1999

Copyright © 1999; Inter-Research Science Publisher
Webmaster: webmaster@int-res.com