Aquatic Microbial Ecology

Inter-Research
Aquatic Microbial Ecology

IR Home



AME
Home
Editors
Forthcoming
Information
Subscribe


Journals
Home
MEPS
AME
CR
DAO
ESEP
Search
Subscribe

Book Series
EE Books
Top Books
ESEP Books
Order

EEIU Brochures
(pdf format)

Discussion Forums
Home

Research
Endangered Species Programs

Institutions
International Ecology Institute
Eco-Ethics International Union

Foundation
Otto Kinne Foundation

AME 14:39-48 (1998)

Abstract

Major and comparable roles for free-living and attached bacteria in the degradation of Phaeocystis-derived organic matter in Belgian coastal waters of the North Sea

S. Becquevort*, V. Rousseau, C. Lancelot

Groupe de Microbiologie des Milieux Aquatiques, Université Libre de Bruxelles, Campus de la Plaine, CP 221, Boulevard du Triomphe, B-1050 Brussels, Belgium

*E-mail: sbecq@pop.ulb.ac.be

ABSTRACT: Microbial degradation of Phaeocystisglobosa colonies and their derived organic matter by free-living and attached bacteria was investigated in Belgian coastal waters during the spring development of diatom-Phaeocystis colonies in 1994. Results obtained show concomitant evolution of hydrolytic ectoprotease and b-ectoglucosidase ectoenzymatic activities with respect to the phytoplankton bloom, suggesting that the low biodegradability of Phaeocystis colonies leading to transient accumulations of Phaeocystis-derived material in the coastal North Sea was not due to a lag phase required for the induction of b-ectoglucosidase. Up to 66% of total bacterial biomass was found attached to particles larger than 10 µm. While occurring always in low abundance compared to free-living bacteria, both the average specific biomass and growth rate of particle-attached bacteria were very high, i.e. 60 fg C cell-1 and 0.28 h-1, respectively. Similarly, specific ectoenzymatic activities of particle-attached bacteria were on average about 5 times higher than those characterising free-living bacteria. Budget calculations show a 53% contribution of Phaeocystis-attached bacteria to the mineralisation of Phaeocystis-associated production, i.e. a 53:47% role for attached and free-living bacteria, respectively.

KEY WORDS: Phaeocystis degradation · Free-living and particle-attached bacteria · Ectoenzymatic activity · Growth rate

Published in AME Vol. 14, No. 1 (1998) on January 2
Print ISSN: 0948-3055; Online ISSN: 1616-1564. Copyright © Inter-Research, Oldendorf/Luhe, 1998

Copyright © 2003; Inter-Research
Webmaster: webmaster@int-res.com