Aquatic Microbial Ecology

Inter-Research
Aquatic Microbial Ecology

IR Home



AME
Home
Editors
Forthcoming
Information
Subscribe


Journals
Home
MEPS
AME
CR
DAO
ESEP
Search
Subscribe

Book Series
EE Books
Top Books
ESEP Books
Order

EEIU Brochures
(pdf format)

Discussion Forums
Home

Research
Endangered Species Programs

Institutions
International Ecology Institute
Eco-Ethics International Union

Foundation
Otto Kinne Foundation

AME 13:19-27 (1997)

Abstract

Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand

Thingstad TF, Lignell R

ABSTRACT: Our conceptual understanding of the role of heterotrophic bacteria in pelagic ecosystems and in ocean biogeochemical cycles is closely linked to our understanding of how their growth rate, abundance, and diversity is controlled. Here we discuss consequences of the simplifying assumption that there are only 5 potentially important interactions between heterotrophic bacteria and their biological and chemical environment. We consider 3 possible types of growth rate limitation: (1) organic carbon, (2) inorganic phosphate, and (3) organic and inorganic nitrogen; and 2 types of cell losses: (1) predation by heterotrophic flagellates, or (2) lysis by infectious viruses. Incorporating this into simple food web structures, we discuss 4 classes of models, 2 based on carbon limitation and 2 based on mineral nutrient limitation of bacterial growth rate. Bacterial abundance is assumed to be controlled by protozoan predation in all cases. For each class, we derive expressions describing bacterial carbon demand, and discuss the control of bacterial carbon demand, growth rate and diversity. It is shown how models predicting an ecosystem production of dissolved organic carbon (DOC) exceeding bacterial carbon demand may be constructed assuming either a low degradability of the DOC, or mineral nutrient limitation of bacterial growth rate. For 2 classes of models, infectious viruses are shown to affect neither growth rate nor abundance of the steady state bacterial community. For all 4 classes of models, viruses are suggested to control diversity of the steady state bacterial community.

KEY WORDS: Bacteria · Models · Degradation · Growth rate · Limitation · Predation · Viral lysis

Published in AME Vol. 13, No. 1 (1997) on July 24
Print ISSN: 0948-3055; Online ISSN: 1616-1564. Copyright © Inter-Research, Oldendorf/Luhe, 1997

Copyright © 2003; Inter-Research
Webmaster: webmaster@int-res.com