Aquatic Microbial Ecology

Inter-Research
Aquatic Microbial Ecology

IR Home



AME
Home
Editors
Forthcoming
Information
Subscribe


Journals
Home
MEPS
AME
CR
DAO
ESEP
Search
Subscribe

Book Series
EE Books
Top Books
ESEP Books
Order

EEIU Brochures
(pdf format)

Discussion Forums
Home

Research
Endangered Species Programs

Institutions
International Ecology Institute
Eco-Ethics International Union

Foundation
Otto Kinne Foundation

AME 11:91-100 (1996)

Abstract

Temporal offset in oceanic production and respiration processes implied by seasonal changes in atmospheric oxygen: the role of heterotrophic microbes

Sherr EB, Sherr BF

ABSTRACT: Recent data on seasonal variation in the concentration of atmospheric oxygen are independent evidence for a marked annual cycle in the production/respiration (P/R) ratio of the biotic community of the ocean in both the northern and the southern hemispheres. Based on the oxygen data, the P/R ratio tends to be >1 during a 3 to 5 mo period from late winter to early spring, and <1 during the rest of the year. The amount of oxygen which accumulates in the atmosphere during spring as a result of ocean biology implies a seasonal unrespired production of, on average, 50 to 60 g C m-2. This amount of fixed carbon is approximately one third of annual oceanic primary production, and several-fold greater than measured sinking fluxes of particulate organic matter in the open sea. Size-fractioned respiration rates in seawater imply that <5 µm sized microbes, in particular bacteria, play a major role in the establishment of the seasonal P/R cycle. Hypotheses to explain less microbial respiration compared to primary production in spring than in summer/fall in the open ocean might include: (1) temperature effect on respiration; (2) seasonal differences in bacterial growth efficiency; and (3) seasonal differences in quality of organic substrates. These processes may result in marked seasonal variation in abundance of metabolically active bacteria. Elucidating the mechanisms that contribute to the seasonal cycle in P/R ratios in the world ocean should be a goal of future research in microbial oceanography.

KEY WORDS: Respiration · Bacteria · Production/respiration ratio · Atmospheric oxygen

Published in AME Vol. 11, No. 1 (1996) on August 29
Print ISSN: 0948-3055; Online ISSN: 1616-1564. Copyright © Inter-Research, Oldendorf/Luhe, 1996

Copyright © 2003; Inter-Research
Webmaster: webmaster@int-res.com